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The concept of cognitive reserve (CR) has been proposed as a protective factor
that modifies the effect of brain pathology on cognitive performance. It has been
characterized through CR proxies; however, they have intrinsic limitations. In this
study, we utilized two different datasets containing tau, amyloid PET, and T1 magnetic
resonance imaging. First, 91 Alzheimer’s disease (AD) continuum subjects were included
from Alzheimer’s Disease Neuroimaging Initiative 3. CR was conceptualized as the
residual between actual cognition and estimated cognition based on amyloid, tau, and
neurodegeneration. The proposed marker was tested by the correlation with CR proxy
and modulation of brain pathology effects on cognitive function. Second, longitudinal
data of baseline 53 AD spectrum and 34 cognitively unimpaired (CU) participants in
the MEMORI dataset were analyzed. CR marker was evaluated for the association
with disease conversion rate and clinical progression. Applying our multimodal CR
model, this study demonstrates the differential effect of CR on clinical progression
according to the disease status and the modulating effect on the relationship between
brain pathology and cognition. The proposed marker was associated with years of
education and modulated the effect of pathological burden on cognitive performance in
the AD spectrum. Longitudinally, higher CR marker was associated with lower disease
conversion rate among prodromal AD and CU individuals. Higher CR marker was related
to exacerbated cognitive decline in the AD spectrum; however, it was associated with a
mitigated decline in CU individuals. These results provide evidence that CR may affect
the clinical progression differentially depending on the disease status.
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INTRODUCTION

The neuropathological hallmarks of Alzheimer’s disease (AD)
are intracellular neurofibrillary tangles of hyper-phosphorylated
tau protein and extracellular depositions of β-amyloid as the
main component of senile plaque (Serrano-Pozo et al., 2011).
The National Institute on Aging and Alzheimer’s Association
(NIA-AA) recently announced a new research framework for the
biological definition of AD, which focused on the diagnosis of AD
with three biomarkers (Jack et al., 2018). The biomarkers were
grouped into β-amyloid, tau protein, and neurodegeneration
(A/T/N), capturing the overall neuropathology of AD.

Cognitive reserve (CR) stems from the discrepancy between
the degree of brain pathology and its clinical manifestations
(Katzman et al., 1988). The reserve concept accounts for
individual susceptibility to age-related brain changes or AD-
related brain neuropathology (Stern, 2012). CR is measured
using surrogate markers of lifestyle, although they have
several innate shortcomings (Zahodne et al., 2013). We
previously demonstrated that the model reflecting overall AD
neuropathology (A-T-N) could capture the properties of CR in
a cross-sectional study (Lee et al., 2019).

The association between CR and clinical progression remains
controversial. Several studies have reported that CR is associated
with clinical progression (Bracco et al., 2007; Reed et al., 2010;
Myung et al., 2017; Robitaille et al., 2018), but others did not
detect an association (Singh-Manoux et al., 2011; Cadar et al.,
2015; Reijs et al., 2017). These conflicting results may be due to
the usage of erratic CR proxies, misdiagnosis of pure AD without
AD biomarkers, and mixture of disease and unimpaired groups
in the analysis.

Thus, in this study, we examined the effect of CR on the
relationship between brain pathology and cognitive function
and on the clinical progression over time by (1) applying a
CR model capturing overall AD neuropathology, (2) selecting
amyloid-positive subjects, and (3) subdividing subjects based on
the disease status. We hypothesized that CR would modulate
the association between brain pathology and cognition and
differentially influence the clinical progression according to
the disease status.

MATERIALS AND METHODS

Participants
First, participants were recruited within the Alzheimer’s
Disease Neuroimaging Initiative (ADNI 3, ClinicalTrials.gov
ID: NCT02854033). Inclusion criteria for AD, amnestic mild
cognitive impairment (aMCI), and cognitively unimpaired
subjects (CU) followed the protocol of ADNI 3 (Number: ATRI-
001). We only included amyloid-positive subjects who had all
three imaging modalities [tau (18F-AV-1451 PET), amyloid PET
(18F-AV-45 or 18F-florbetaben PET), and T1-weighted magnetic
resonance imaging (MRI)]. Amyloid (Aβ) status was determined
by the global standard uptake value ratio (SUVR) > 1.11
(18F-AV-45) or > 1.08 (18F-florbetaben). At baseline, the final
participants comprised 25 AD, 42 prodromal AD [Aβ (+)
aMCI], and 24 preclinical AD [Aβ (+) CU]. Subsequently, 77

subjects (19 AD, 36 MCI, and 22 CU) were available in the
longitudinal analysis.

Second, subjects were recruited at the memory disorder clinic
in the Department of Neurology at the Asan Medical Center
(AMC) and the Samsung Medical Center (SMC) in Seoul,
South Korea. We obtained all three modalities for each subject
at baseline (tau PET [18THK-5351], Aβ PET [18F-florbetaben],
and T1 MRI). All AD subjects fulfilled the clinical diagnostic
criteria for AD according to the NINCDS/ADRDA, and those
with aMCI met the Petersen’s criteria. Subjects with AD and
aMCI were Aβ-positive as determined by brain amyloid plaque
load (BAPL score) ≥ 2. CU was defined as being elderly and
free of neurological disease, Clinical Dementia Rating (CDR) 0
and Mini-Mental State Examination (MMSE) > 27. At baseline,
87 participants [21 AD, 32 prodromal AD, and 34 Aβ (-) CU]
were included. At 4-year follow-up, 61 and 43 subjects had
available longitudinal data for the MMSE and other cognitive
scores, respectively.

For dataset 1, ethics approval was obtained by the ADNI
investigators. All study participants provided written informed
consent. ADNI 3 is listed in the ClinicalTrials.gov registry
(identifier: NCT02854033). For dataset 2, the Institutional
Review Board of both hospitals approved the study, and all
subjects provided written informed consent.

Neuropsychological Assessment and
Cognitive Reserve Surrogate Marker
In dataset 1, we utilized composite scores of memory (ADNI-
MEM), executive function (ADNI-EF), language function
(ADNI-LAN), and visuospatial function (ADNI-VIS) in ADNI
3 to construct CR marker. These were composite z-scores from
the ADNI neuropsychological battery of test. We applied the total
summation of four domain scores as a global cognitive composite
score. Other cognitive measures, including the Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-cog) 11
and MMSE, were used for further validation. In dataset 2, we
measured the global composite score for the CR marker based
on previous studies (Jahng et al., 2015; Lee et al., 2019). The
global composite score was obtained from the average of five
domains containing 14 neuropsychological tests (e.g., attention,
visuospatial, language, executive, and memory function). The
tests were composed of Seoul Verbal Learning Test (SVLT-E) and
Rey Complex Figure Test (RCFT) in memory domain contrasting
program, Go-No-Go test and Controlled Oral Ward Association
Test (COWAT) in executive function, forward and backward
Digit Span Test (DST) in Attention, RCFT copying task in
Visuospatial function, and Korean-Boston Naming Test (K-BNT)
in language function.

We used years of education as a CR proxy. In dataset 1, we
correlated the CR marker with years of education. To further
validate our CR marker, education was applied to identify CR-
related regions in Aβ pathology and neurodegeneration.

Image Acquisition
In ADNI dataset, MRI scans were acquired on scanners
from different manufacturers (Philips, Best, Netherlands; GE,
Cleveland, OH; and Siemens, Malvern, PA, United States)
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using harmonized protocols. We obtained 3D T1-weighted
magnetization-prepared rapid gradient echo (MPRAGE)
sequence, with 1 mm isotropic voxel resolution and repetition
time (TR) = 2,300 ms. Aβ PET scans were recorded for 20 min
at 50 min after 370 MBq ± 10% injection (18F-AV-45) or
90 min after 300 MBq ± 10% injection (18F-florbetaben) of
the tracer. Tau PET scans were acquired for 30 min at 75–
105 min after 370 MBq ± 10% tracer injection. In dataset 2,
we obtained 3D T1-weighted MPRAGE with voxel size (AMC:
1.11 × 1.11 × 1.2 mm3, SMC: 1.0 × 1.0 × 0.5 mm3) and
a TR (AMC: 6.8 ms, SMC: 9.9 ms) from the manufacturer
Philips (Eindhoven, Netherlands). Tau PET scans were
acquired for 20 min, commencing 50 min after the injection
of 185 MBq ± 10% of 18F-THK5351. Aβ PET scans were
acquired for 20 min, commencing 90 min after the injection of
300 MBq ± 10% of the tracer. Hoffman phantom-based PET
harmonization was applied in datasets 1 and 2.

Data Preprocessing
In both datasets, individual tau and Aβ PET scans were
co-registered onto the individual T1 image and normalized
into Montreal Neurological Institute (MNI) standard space.
Preprocessed images were smoothed (6 mm). SUVR images
were calculated for all individuals using the cerebellar gray
matter as a reference. All preprocessing was conducted using
SPM12 (Wellcome Trust Centre for Neuroimaging, University
College London) and MATLAB R2014b (The Mathworks, Natick,
MA, United States). For cortical thickness, T1-weighted images
underwent preprocessing steps with Freesurfer 6.01. The total
intracranial volume (TIV) was obtained by summing the volumes
of gray matter, white matter, and CSF.

Calculation of the Cognitive Reserve
Marker
We conceptualized CR as the residual of actual cognitive
performance and estimated performance; the latter was estimated
from AD neuropathology, demographics, a genetic factor (ApoE
ε4), and TIV. The “residual” concept for quantifying CR has
been applied previously (Reed et al., 2010; Habeck et al., 2017;
van Loenhoud et al., 2017). While these studies captured only
the structural aspects, our method had an advantage in that the
overall AD neuropathology was reflected in the model as follows
(A-T-N: primary components of AD biomarkers):

Cognitive functionestimated = β0 + β1 × XTau + β2 × XAβ

+ β3 × XThickness + β4 × XAge + β5 × XSex + β6 × XApoE ε

4 + β7 × XTIV
(+ β8 × XAβ tracertype: In dataset 1, Aβ tracer type was

included; XTau, XAβ , and XThickness: Global value obtained from
each imaging modality)

Cognitive function: Cognitive composite score using multiple
domains

Cognitive reserve (CR) = Cognitive functionobserved –
Cognitive functionestimated

As a global value for each AD pathology, we extracted the
global extent of tau, Aβ, and cortical thickness per subject using

1https://surfer.nmr.mgh.harvard.edu

multimodal imaging. In tau PET, we obtained images with GM
probability > 0.5 and calculated the average tau SUVR value per
subject in Braak regions of interest (ROIs) (Hoenig et al., 2017).
To avoid off-target effects of the tracer, we excluded ROIs in the
basal ganglia and thalamus (Harada et al., 2016). In Aβ PET, we
obtained images with GM probability > 0.5 and extracted a global
Aβ SUVR value in combined ROIs (Jack et al., 2010). Similarly,
we measured the average thickness value among 68 Desikan
ROIs. Age (Guerreiro and Bras, 2015) and sex (Mielke, 2018) are
demographic risk factors for AD, and ApoE allele 4 (Liu et al.,
2013; Safieh et al., 2019) is considered a representative genetic
factor of AD. TIV was added as a covariate for thickness and
an estimate of brain reserve (Tate et al., 2011). We subsequently
performed multiple linear regression with the dependent variable
of cognitive function; predictors of global tau, Aβ deposition,
and thickness (AD neuropathology); and covariates of age, sex,
ApoE ε4 status, and TIV. The beta coefficients of these variables
were applied to estimate the cognitive function. Finally, we
calculated the CR marker as the residual between the actual
and estimated score. According to the equation, higher CR
marker value denoted greater CR as it indicated that relatively
high cognitive function was maintained at a given level of AD
neuropathology in the population.

Effect of the Cognitive Reserve Marker
on the Relationship Between
Pathological Burden and Cognition
For dataset 1, we calculated Pearson’s correlation between the
CR marker and a conventional CR proxy, years of education.
We also performed multiple linear regression using education
as an outcome; CR marker as a predictor; and age, sex, and
TIV as covariates.

Fundamentally, we investigated whether the CR marker could
modulate the effect of brain pathology on cognitive function
across the AD spectrum. To identify regions for which greater
education enabled subjects to tolerate greater Aβ burden (CR-
related regions), we first performed voxel-wise multiple linear
regression of Aβ SUVR with education as the predictor, adjusting
for age, sex, Aβ scanner type, and MMSE. The resulting t map
was thresholded at the voxel level at α = 0.01 and corrected at
the cluster level at FWE α < 0.05. We then extracted the average
Aβ SUVR within the CR-related regions for each subject. Finally,
we tested the interaction of the CR marker × Aβ SUVR on
cognition, controlling for age and sex across the AD spectrum.
We conducted similar procedures with cortical thickness in ROI-
wise, adjusting for age, sex, MMSE, and TIV among the AD
spectrum (FDR p < 0.05). We measured the atrophy value
as the reciprocal of thickness value within significant regions.
We tested the interaction of the CR marker × atrophy value
on cognitive function, controlling for age, sex, and TIV across
the AD spectrum.

Effect of the Cognitive Reserve Marker
on Clinical Progression
For dataset 2, we performed longitudinal analysis to verify the
effect of the CR marker on clinical progression. For a 4-year
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period, we examined the conversion rate and change in cognitive
scores and disease severity across the entire group. We performed
Cox-proportional hazard regression among prodromal AD
(n = 32) and CU (n = 34) to investigate the relationship
between the CR marker and disease conversion. In this case,
we calculated the CR marker without AD subjects at baseline.
Diagnostic changes to more severe stages were only considered
as a disease conversion. The model contained conversion with
time as an outcome measure; CR marker (continuous or binary)
as a predictor; and age, sex, ApoE, and TIV as covariates. We
validated the effect of the CR marker by confirming hazard
ratio (HR), p-value, and 95% confidence intervals (CIs) of HR
in the model. Finally, we conducted a likelihood ratio test to
evaluate the goodness of model fit between two competing
models with and without the CR marker, respectively. We also
assessed the Akaike Information Criterion (AIC) to estimate
the relative quality of statistical models for a given data. AIC
deals with the tradeoff between the goodness of model fit and
complexity of the data; smaller AIC indicates higher quality
(Vrieze, 2012).

We conducted linear mixed models with cognitive composite
score, memory score, and MMSE as outcomes; the CR marker
at baseline, time, and CR marker × time as predictors; and
adjusted for age, sex, ApoE, and TIV. We repeated a linear mixed
model with CDR-SB as an outcome with the same predictors and
covariates. Our interest was the interaction of the CR marker
and time, as this referred to the effect of the CR marker on
clinical progression.

These analyses were divided into AD spectrum and CU
groups, as CR behavioral pattern would exert differently
according to the disease status. The 95% CIs of beta coefficient
of the CR marker, time, and their interaction were estimated.
Finally, we performed a likelihood ratio test and AIC to estimate
the additional value of the model with the interaction.

In order to estimate more reliable CIs for beta values
of the interaction in clinical progression, semi-parametric
bootstrapping of the linear mixed model was performed. For
this process, we made 1,000 bootstrap samples by resampling
the original data with replacement and calculated 95% CIs of the
bootstrapped coefficients.

For dataset 1, we repeated linear mixed models with ADAS-
cog 11 as outcomes; the CR marker at baseline, time, and CR
marker× time as predictors; and adjusted for age, sex, ApoE, and
TIV. The analyses were also divided into AD spectrum and CU
groups. We conducted a likelihood ratio test and AIC to estimate
the additional value of the model with the interaction.

Sensitivity Analysis
In a longitudinal analysis of dataset 2, to figure out the
difference between using continuous Aβ SUVR value and using
visual diagnosis of Aβ, first we applied binary value (positivity,
negativity) instead of continuous value in the calculation of
the CR marker. Then, we repeated linear mixed model analysis
and compared the results with the model constructed from
continuous Aβ SUVR.

Second, we investigated the effect of education on clinical
progression in dataset 2. Therefore, we conducted linear

mixed model analysis by replacing the CR marker with
education into the model.

Finally, we added the global pathological burden (global tau,
Aβ, and thickness value) in the linear mixed model as covariates
to partly account for the explanation that the CR marker is
only a derivative of pathological measurement in relation to
cognitive function.

Statistical Analysis
Statistical analyses were conducted in SPSS 18 (Chicago, IL,
United States). To compare participant characteristics, chi-square
tests and ANOVA tests were performed. In the longitudinal
analysis, linear mixed model analysis and semi-parametric
bootstrapping were conducted using R2.

RESULTS

Participant Characteristics
As shown in Table 1, we observed significant differences among
the three groups in global tau, Aβ deposition, cortical thickness,
and cognitive scores. In dataset 1, we investigated the A/T/N
classification status using CSF information. Among the 91
subjects, 62 subjects (16 AD, 26 MCI, 20 CU) have baseline
CSF information of p-tau181 and t-tau. Unlike the pathological
burden obtained from imaging modalities, CSF levels of p-tau
and t-tau did not differ significantly among the three groups
(Table 1). Abnormal levels of CSF biomarkers were defined
as p-tau > 27 pg/ml (T +) and t-tau > 300 pg/ml (N +)
(Blennow et al., 2019). In the AD subjects, A/T/N (+/+/+)
group accounted for 68.8% (11/16) and A/T/N (+/−/−) group
accounted for the rest. Among the MCI subjects, A/T/N
(+/+/+) group accounted for 42.3% (11/26), A/T/N (+/−/−)
group accounted for 50% (13/26), and A/T/N (+/+/−) group
accounted for the rest. In the CU subjects, each A/T/N (+/+/+)
and A/T/N (+/−/−) group accounted for 45% of the total, and
A/T/N (+/+/−) group accounted for the rest (10%). Therefore,
it was confirmed that the AD group showed a relatively large
distribution of A/T/N (+/+/+). The average follow-up period
was 26 months. In total, 77 subjects (19 AD, 36 MCI, and 22 CU)
were available in the longitudinal analysis.

In dataset 2, the mean age was lower in the AD group than
that in the prodromal AD and CU groups, attributing to the
inclusion of 15 early-onset AD. The portion of ApoE ε4 carriers
was higher in the AD spectrum than that in the CU. We could
not investigate the A/T/N classification of the respective group
because the dataset did not contain CSF information. The average
follow-up period was 27 months. A total of 61 participants (18
AD, 28 prodromal AD, and 15 CU) had longitudinal MMSE, and
43 subjects (11 AD, 20 prodromal AD, and 12 CU) had follow-up
composite score, memory score, and CDR-SB. The total incidence
of diagnostic conversion was 28.8%. The conversion rate of
prodromal to AD was 53.1%, and the conversion rate of CU to
prodromal or CU to AD was 2.9%, respectively.

2www.r-project.org
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TABLE 1 | Baseline characteristics of dataset 1 (ADNI) and dataset 2.

Dataset 1 (ADNI 3) AD
(n = 25)

aMCI
(n = 42)

CU
(n = 24)

Demographics

Age 73.4 (9.0) 73.2 (7.3) 72.3 (5.6)

Sex, Fa (%) 9 (36.0) 20 (47.6) 17 (70.8)

Education 15.9 (2.4) 16.1 (2.5) 17.0 (1.9)

ApoE ε4 (%) 19 (76.0) 30 (71.4) 14 (58.3)

TIV 1.57 (0.21) 1.54 (0.16) 1.51 (0.12)

Pathologic burden

Tau deposition (SUVR)b 1.30 (0.38) 1.12 (0.20) 1.08 (0.15)

Aß deposition (SUVR)c 1.45 (0.20) 1.38 (0.19) 1.21 (0.18)

Cortical thickness (mm)c 2.37 (0.11) 2.48 (0.08) 2.51 (0.11)

CSF p-tau (pg/ml) 34.5 (12.7) 36.1 (19.9) 26.9 (12.9)

CSF t-tau (pg/ml) 343.6 (104.3) 341.0 (150.4) 277.7 (97.7)

Cognitive function

MMSEc 22.0 (3.2) 27.3 (2.3) 29.1 (1.4)

Composite (z-scores)c −3.67 (3.02) 0.99 (2.25) 2.92 (1.65)

ADNI-MEM (z-scores)c −0.90 (0.52) 0.14 (0.55) 1.02 (0.50)

ADNI-EF (z-scores)c −1.03 (1.15) 0.34 (0.89) 0.91 (0.73)

ADNI-LAN (z-scores)c −0.67 (0.92) 0.40 (0.86) 0.81 (0.62)

ADNI-VS (z-scores)c −1.12 (1.12) 0.13 (0.65) 0.19 (0.71)

ADAS-cog 11 (baseline)c 21.1 (6.7) 10.2 (4.3) 5.0 (2.6)

ADAS-cog 11 (follow-up)c 29.5 (11.3) 13.2 (7.0) 5.5 (2.4)

Dataset 2 AD
(n = 21)

aMCI
(n = 32)

CU
(n = 34)

Demographics

Agea 63.2 (11.3) 69.2 (7.2) 68.7 (6.8)

Sex, F (%) 14 (66.7) 23 (71.9) 22 (64.7)

Education 11.6 (4.4) 11.0 (4.3) 10.6 (4.8)

ApoE ε4b (%) 9 (42.9) 17 (53.1) 6 (17.6)

TIV 1.35 (0.12) 1.33 (0.13) 1.37 (0.13)

CDR-SBc 6.39 (3.98) 1.90 (0.96) 0.31 (0.43)

Pathologic burden

Tau deposition (SUVR)c 1.39 (0.09) 1.32 (0.11) 1.20 (0.10)

Aß deposition (SUVR)c 1.44 (0.15) 1.50 (0.14) 1.10 (0.07)

Cortical thickness (mm)c 2.29 (0.13) 2.39 (0.11) 2.45 (0.12)

Cognitive function

MMSEc 19.4 (5.0) 24.3 (3.6) 28.6 (1.2)

Compositec 31.5 (11.1) 42.8 (9.5) 61.0 (7.1)

Memoryc 46.1 (13.3) 61.6 (14.6) 107.9 (15.2)

Executivec 56.0 (29.8) 75.5 (24.9) 102.3 (17.5)

Languagec 34.1 (13.8) 37.6 (13.4) 50.8 (5.4)

Attentionb 8.6 (2.3) 9.3 (2.6) 11.1 (2.8)

Visuospatialc 12.8 (11.9) 30.2 (6.2) 33.0 (4.5)

Clinical progression

Follow-up (month) 25.8 (12.3) 29.1 (9.0) 23.3 (9.1)

Conversion to AD, n (%) – 17 (53.1) 1 (2.9)

Conversion to aMCI, n (%) – – 1 (2.9)

Values are mean (standard deviation) or number (%). ap < 0.05; bp < 0.01;
cp < 0.001, significant between groups.
AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; CU, cognitively
unimpaired; ApoE ε4, apolipoprotein ε4 allele; TIV, total intracranial volume; SUVR,
standardized uptake value ratio; p-tau, phosphorylated tau; t-tau, total tau; MMSE,
Mini-Mental State Examination; ADAS-cog 11, Alzheimer’s Disease Assessment
Scale-Cognitive Subscale 11; Composite score, the average score of five domains;
CDR-SB, Clinical Dementia Rating Scale-Sum of Boxes.

Model Construction
In dataset 1, we confirmed the relationship between cognitive
performance and each predictor via beta values. The linear
regression model revealed that composite score was negatively
associated with global tau (βtau = −6.35) and Aβ deposition
(βAβ = −1.80). The composite score was positively associated
with the global cortical thickness (βthickness = 12.85). The
R2 of the model was 0.52 (F-test, p = 1.49∗e−10, adjusted
R2 = 0.48). There was no multicollinearity among variables
(maximum VIF < 1.85). As a result, the estimated composite
z-scores were significantly correlated with the actual composite
z-scores using Pearson’s correlation (r = 0.72, p = 6.51∗e−16).
Then, we dichotomized the actual z-score using median value
(median = 0.819) and investigated whether the estimated z-scores
predicted actual z-scores well. In a discrete ROC curve analysis,
the estimated composite z-score classified high and low actual
z-scores well (AUC = 0.83, 95% CI = 0.75–0.92, accuracy = 0.77,
sensitivity = 0.83, specificity = 0.71). Through this analysis, we
can conclude that the estimated cognitive function from the
biological markers, demographics, and genetic factors would be
a reasonable estimate of the actual cognitive function. Finally, we
calculated the CR marker using the differences between the actual
and estimated composite scores.

Using dataset 2, we already validated the suitability of
the model (Lee et al., 2019). In brief, the constructed
model demonstrated that the composite score was significantly
associated with each global AD neuropathology (βtau = −18.86,
βAβ = −32.05, and βthickness = 34.11). The R2 of the model
was 0.57 (F-test, p < 0.00001). There was no multicollinearity
within variables (maximum VIF < 1.9). Estimated composite
scores were significantly correlated with actual composite scores
(r = 0.76, p = 2.21∗e−17). Also, we dichotomized the actual
composite score using median value (median = 47.2) and
investigated whether the estimated composite scores predicted
high and low composite scores well. In a discrete ROC curve
analysis, the estimated composite score classified high and
low actual composite scores reasonably well (AUC = 0.92,
95% CI = 0.87–0.98, accuracy = 0.82, sensitivity = 0.77,
specificity = 0.86). Then, we calculated the CR marker from the
residuals between the actual and estimated composite scores.

Effect of the Cognitive Reserve Marker
on the Relationship Between
Pathological Burden and Cognition
In dataset 1, the CR marker was significantly correlated with years
of education (r = 0.29, p = 0.005). Subjects with more years of
education had greater CR than individuals with fewer years of
education. The positive association between the CR marker and
years of education remained even after adjusting for age, sex, and
TIV (t = 2.94, p = 0.004).

Fundamentally, we tested whether the CR marker could
modulate the association between AD pathological burden and
cognitive function across the AD spectrum. In Figures 1A,B,
for Aβ pathology, higher level of education was associated with
greater Aβ deposition within the left superior and middle frontal
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FIGURE 1 | Effect of the CR marker on the relationship between pathological burden and cognitive functions in AD spectrum. (A) CR-related regions in amyloid
burden using education as a CR proxy (left frontal region). (B) Scatterplot for the interaction of the CR marker × left frontal Aβ SUVR on reciprocal of the Alzheimer’s
Disease Assessment Scale-Cognitive Subscale 11 (ADAS-cog 11). (C) CR-related regions in thickness using education as a CR proxy (left temporoparietal region).
(D) Scatterplot for the interaction of the CR marker × left temporoparietal atrophy on the reciprocal of the Alzheimer’s Disease Assessment Scale-Cognitive Subscale
11 (ADAS-cog 11). To better represent the effect of CR marker, ADAS-cog 11 score was expressed as reciprocal. For illustration, groups of high and low CR markers
(via median value) are plotted separately.

regions, after adjusting for age, sex, Aβ scanner type, and MMSE
(t = 2.37, p < 0.01). We examined whether the CR marker
modified the effect of left frontal Aβ burden on cognition in the
AD spectrum, controlling for age, sex, and ApoE. There was a
significant interaction effect of the CR marker × left frontal Aβ

SUVR on ADAS-cog 11 (t-stat = 2.17, p = 0.034). The interaction
effect of CR marker × left frontal Aβ SUVR on MMSE was
marginal (t-stat = −1.93, p = 0.058). As shown in Figures 1C,D,
higher education was associated with greater cortical atrophy
within the left superior temporal gyrus and supramarginal gyrus
after controlling for age, sex, MMSE, and TIV. The interaction
effect of the CR marker× left temporoparietal atrophy on ADAS-
cog 11 was confirmed to be significant (t-stat = 2.29, p = 0.026).

Effect of the Cognitive Reserve Marker
on Clinical Progression
Cox regression analysis revealed that in prodromal AD and CU
groups, the CR marker was negatively associated with conversion
rate, indicating that higher CR was related to lower conversion
risk (continuous: HR = 0.57, 95% CI: 0.34 ∼ 0.97, β = −0.56,
p = 0.037; binary: HR = 0.33, 95% CI: 0.11∼0.97, β = −1.10,
p = 0.044). The model with the CR marker showed a better model
fit than that of the model without the CR marker in a likelihood
ratio test (continuous: p = 0.031; binary: p = 0.037). The model
with the CR marker had lower AIC value than that of the model
without the CR marker [without CR marker: 115.75, with CR
marker: 113.12 (continuous)/113.40 (binary)].
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In the analysis of cognitive decline among AD spectrum,
clear cognitive decline was observed across time in all cognitive
scores. Particularly, higher CR marker was related to more
exacerbated decline in cognitive performance in the AD spectrum
(MMSE: p = 0.026, composite score: p = 0.045, memory score:
p = 0.036) throughout Table 2 and Figure 2. In CU, cognitive
scores decreased over time, with the exception of MMSE. The
CR marker also modified the relationship between cognitive
function and time. However, the pattern modulated by the CR
marker was different from that of the AD spectrum, such that
subjects with high CR exhibited attenuated cognitive decline
(MMSE: p = 0.017, composite score: p < 0.001, memory score:
p = 0.003) throughout Table 2 and Figure 2. The likelihood
ratio test revealed that the model with the interaction showed
a better model fit than that of the model without interaction
in all cognitive scores among CU and AD spectrum. In the
aspects of AIC, the model with interaction also had lower AIC
values in both AD spectrum and CU as shown in Table 3.
AD spectrum participants with high CR exhibited more drastic
alterations in disease severity in Table 2. The model with the
interaction showed a better model fit than that of the model
without interaction among AD spectrum in Table 3.

More reliable results were obtained from 95% CIs derived
from bootstrapping, indicating that the behavioral pattern of CR
differed depending on disease stage and was related to accelerated
cognitive decline in AD spectrum subjects but with alleviated
cognitive decline in CU subjects as shown in Table 4.

In the analysis of ADAS-cog 11 among AD spectrum in
dataset 1, the CR marker modified the relationship between
cognitive decline and time, such that subjects with higher CR
marker exhibited worse cognitive decline (β = 0.07; p = 0.026;

Supplementary Table 1). Since the higher score in ADAS-cog
11 indicates greater cognitive impairment, AD spectrum subjects
with higher CR marker showed more steeper increase in the
score. However, in the CU group, the CR marker showed
a tendency to modulate the relationship between cognitive
function and time, but did not reach a significant level (β =−0.02;
p = 0.20; Supplementary Table 1). The likelihood ratio test also
revealed that the model with the interaction showed a better
model fit than that of the model without the interaction in the
AD spectrum (Supplementary Table 1).

Sensitivity Analysis
The constructed model using visual diagnosis of Aβ

demonstrated that the composite score was significantly
associated with each global AD neuropathology (βtau = −18.36,
βAβ = −17.42, βthickness = 22.41). The R2 of the model was
0.62 (F-test, p < 0.00001, adjusted R2 = 0.59). We calculated
the CR marker from the residuals between the actual and
estimated composite scores. The CR marker correlated well
with years of education (r = 0.49, p < 0.00001). In the analysis
of cognitive decline among AD spectrum, the CR marker
showed a tendency to modulate the relationship between
cognitive function and time, but did not reach a significant
level (MMSE: p = 0.08, composite score: p = 0.13, memory
score: p = 0.26, Supplementary Table 2). However, subjects
with high CR exhibited more drastic alterations in disease
severity (CDR-SB: p = 0.046). In the longitudinal analysis of
CU subjects, the CR marker modulated the association between
cognitive performance and time (MMSE: p = 0.001, composite
score: p < 0.001, memory score: p = 0.027, Supplementary
Table 2). In case of CDR-SB, CU subjects with high CR

TABLE 2 | Effect of the CR marker on cognitive decline and disease severity in AD spectrum and cognitively unimpaired group.

AD spectrum CU

β CI P-value β CI P-value

MMSE

CR marker 1.39 −0.17 ∼ 2.97 0.084 0.89 0.15 ∼ 1.62 0.026

Time −0.12 −0.16 ∼ −0.08 <0.001 −0.02 −0.05 ∼ 0.01 0.26

CR marker × Time −0.04 −0.08 ∼ −0.01 0.026 0.04 0.01 ∼ 0.07 0.017

Composite score

CR marker 5.19 2.20 ∼ 8.21 0.001 5.47 3.25 ∼ 7.65 <0.001

Time −0.20 −0.28 ∼ −0.12 <0.001 −0.18 −0.27 ∼ −0.08 0.001

CR marker × Time −0.08 −0.15 ∼ −0.003 0.045 0.20 0.12 ∼ 0.28 <0.001

Memory score

CR marker 7.81 0.35 ∼ 15.32 0.018 8.78 3.91 ∼13.65 0.001

Time −0.24 −0.37 ∼ −0.11 <0.001 −0.47 −0.76 ∼ −0.18 0.003

CR marker × Time −0.14 −0.26 ∼ −0.01 0.036 0.39 0.15 ∼ 0.64 0.003

CDR-SB

CR marker −0.68 −1.58 ∼ 0.22 0.14 −0.10 −0.64 ∼ 0.44 0.72

Time 0.07 0.04 ∼ 0.10 <0.001 0.02 −0.01 ∼ 0.06 0.15

CR marker × Time 0.03 0.01 ∼ 0.06 0.04 −0.02 −0.04 ∼ 0.01 0.23

AD spectrum, Alzheimer’s disease spectrum; CU, cognitively unimpaired group; MMSE, Mini-Mental State Examination; Composite score, the average score of five
domains; CDR-SB, Clinical Dementia Rating Scale-Sum of Boxes; β, Beta coefficient of each variable; CI, 95% confidence interval of the beta coefficient; P-value, p-value
of each variable in the linear mixed model.
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FIGURE 2 | Trajectories of cognitive decline according to the CR marker in AD spectrum and cognitively unimpaired group. Panels (A–C) represent the different
cognitive scores. In each plot, X-axis: Time (month), Y-axis: each cognitive score, Left panel: high CR group, Right panel: low CR group. (A) Trajectories of MMSE
according to the CR marker. (B) Trajectories of composite score according to the CR marker. (C) Trajectories of memory score according to the CR marker. In the
AD spectrum, individuals with high CR showed a steeper decline than the low CR group. In contrast, individuals with high CR showed a attenuated decline than the
low CR among the cognitively unimpaired group. Shadows in each plot indicate 95% confidence intervals. CU, cognitively unimpaired group; MMSE, Mini-Mental
State Examination; Composite, cognitive composite score; MEM, memory function score.

showed more delayed alterations in disease severity (CDR-SB:
p = 0.024). Therefore, it was found that although the CR
marker using binarization of amyloid PET tended to modulate

the relationship between cognition and time to some extent,
the CR marker using continuous SUVR value reflects the
properties of CR better.
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TABLE 3 | Goodness of fit in models with the interaction between the CR marker and time on cognitive trajectories among AD spectrum and cognitively
unimpaired group.

AD spectrum CU

Model AIC Log likelihood P-value AIC Log likelihood P-value

MMSE

w/o the interaction 792.07 −385.04 – 147.12 −62.56 –

with the interaction 789.12 −382.56 0.026 143.94 −59.97 0.023

Composite score

w/o the interaction 458.11 −218.05 – 158.54 −70.27 –

with the interaction 456.11 −216.06 0.046 146.99 −63.49 0.0002

Memory score

w/o the interaction 523.29 −250.65 – 198.40 −90.20 –

with the interaction 520.86 −248.43 0.035 191.53 −85.77 0.003

CDR-SB

w/o the interaction 313.04 −145.52 – 87.57 −34.79 –

with the interaction 310.76 −143.38 0.039 88.09 −34.05 0.22

AD spectrum, Alzheimer’s disease spectrum; CU, cognitively unimpaired groups; AIC, Akaike Information Criterion; Interaction, interaction of the CR marker with time;
w/o, without; MMSE, Mini-Mental State Examination; Composite score, the average score of five domains; CDR-SB, Clinical Dementia Rating Scale-Sum of Boxes.

In case of education, years of education was not associated
with accelerated cognitive decline (memory score: p = 0.12,
MMSE: p = 0.19, composite score: p = 0.78). In the CU group,
education modified the relationship between cognitive function
and time, such that subjects with higher education exhibited
attenuated cognitive decline (memory score: p = 0.003, MMSE:
p = 0.004, composite score: p < 0.001, Supplementary Table 3).

We verified whether the CR marker had an independent effect
on clinical progression by adjusting global pathological burden
as covariates. Even though the values of global pathology were
added as covariates, the CR marker still had an effect on clinical
progression among AD spectrum in MMSE, memory score, but
not composite score (MMSE: p = 0.023, memory score: p = 0.047,
composite score: p = 0.06, Supplementary Table 4). The subjects
with high CR showed more exacerbated cognitive decline in the
AD spectrum. In the analysis of CU subjects, the CR marker
also affected the relationship between cognitive function and time
(MMSE: p = 0.006, memory score: p = 0.003, composite score:
p < 0.001, Supplementary Table 4). In case of CDR-SB, CU
subjects with high CR showed more delayed alterations in disease
severity (CDR-SB: p = 0.047). Through this subsequent analysis, it
was determined at least in part that the CR marker could have an
additional effect on clinical progression, not simply a derivative
of global pathology.

DISCUSSION

Our major findings were that CR, defined as the difference
between actual and estimated cognitive function from overall AD
neuropathology, modulated the effect of AD pathological burden
on cognition and differentially affected clinical progression
depending on the disease status. We demonstrated that the
slope of cognitive decline against AD pathological burden was
steeper in those with high CR among AD spectrum. We observed
that CR affected clinical progression as AD spectrum with high

CR exhibited aggravated cognitive decline and disease severity.
In contrast, CR was related to mitigated cognitive decline in
the CU. These results represent the phenomenon of CR well
(Stern, 2009).

Specifically, among CU participants, CR exhibited a
protective effect that delayed the onset of cognitive impairment.
However, once cognitive decline had commenced, CR was
associated with accelerated cognitive deterioration. We can
argue this phenomenon as follows (Stern, 2012): Individuals

TABLE 4 | Effect of the CR marker on cognitive decline and disease severity (95%
confidence intervals from bootstrapping).

AD spectrum CU

95% CIs of β values 95% CIs of β values

MMSE

CR marker −0.17 ∼ 3.01 0.17 ∼ 1.67

Time −0.16 ∼ −0.08 −0.05 ∼ 0.01

CR marker × Time −0.08 ∼ −0.006 0.01 ∼ 0.07

Composite score

CR marker 2.00 ∼ 8.50 3.47 ∼ 7.47

Time −0.28 ∼ −0.12 −0.26 ∼ −0.09

CR marker × Time −0.15 ∼ −0.007 0.13 ∼ 0.27

Memory score

CR marker 1.23 ∼ 14.39 4.31 ∼ 13.79

Time −0.38 ∼ −0.11 −0.75 ∼ −0.22

CR marker × Time −0.27 ∼ −0.01 0.14 ∼ 0.62

CDR-SB

CR marker −1.64 ∼ 0.27 −0.64 ∼ 0.42

Time 0.04 ∼ 0.10 −0.01 ∼ 0.06

CR marker × Time 0.003 ∼ 0.06 −0.05 ∼ 0.01

AD spectrum, Alzheimer’s disease spectrum; CU, cognitively unimpaired group;
MMSE, Mini-Mental State Examination; Composite score, the average score of
five domains; CDR-SB, Clinical Dementia Rating Scale-Sum of Boxes; β, beta
coefficient of each variable; CI, 95% confidence interval of the beta coefficient.
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with higher CR may tolerate greater AD neuropathology
burden; thus, the point at which cognitive function begins
to deteriorate would be delayed relative to those with lower
CR. However, there is a certain level (threshold) where the
pathological burden is so severe that cognitive function
cannot be maintained. Based on this presumption, individuals
with higher CR will experience cognitive decline when
pathology has progressed to a greater degree and have less
time to the end point where pathology defeats cognitive
function. This would induce a steeper rate of cognitive decline
once it has begun.

Although definitive conclusions on the differential effects of
CR depending on disease status have yet to be drawn, multiple
studies have reproduced this pattern using various methods to
quantify CR. In disease stage showing CR-related accelerated
progression, education (Andel et al., 2006; Scarmeas et al., 2006;
Hall et al., 2007), occupational complexity (Andel et al., 2006;
Boots et al., 2015), IQ (Pavlik et al., 2006; Bracco et al., 2007),
and W-score method (van Loenhoud et al., 2019) have been
used to identify CR. The literature has reported CR-related
attenuated cognitive decline in early stages of AD and CU
groups using education (Allegri et al., 2010; Clouston et al.,
2019), occupational complexity (Andel et al., 2005; Smart et al.,
2014), composite scores (Pettigrew et al., 2017; Soldan et al.,
2017), and latent variable method (Reed et al., 2010; Zahodne
et al., 2013) to measure CR. However, relatively few studies
have been conducted to verify the longitudinal effects of CR
on clinical progression across CU and AD spectrum. Most
studies have only addressed one specific stage of the disease or
unimpaired groups. Moreover, the inclusion of participants was
often dependent on clinical entities without AD biomarkers, and
results may be misleading. In contrast, our study demonstrated
cross-sectional and longitudinal effects of CR on cognitive
function in both CU and AD spectrum using an identical method
with AD biomarkers.

The underlying mechanism linking CR, AD neuropathology,
and cognitive function remains unclear. One tentative theoretical
model that integrates CR-related researches has been proposed
(Arenaza-Urquijo et al., 2015), whereby neuroprotective and
compensatory mechanisms coexist and play differential roles
in disease, with neuroprotective mechanisms playing a major
role in early stages and compensatory mechanisms coming
into play in more advanced disease stages. The concept of
neuroprotection in early stages is supported by animal and
intervention studies. Animal studies have demonstrated reduced
Aβ levels or increased Aβ clearance in mouse with environmental
enrichment or voluntary wheel running (Lazarov et al., 2005;
Costa et al., 2007). Intervention studies have reported increased
perfusion and hippocampal size with exercise and biochemical
changes in the hippocampus after cognitive training in the
normal elderly people (Valenzuela et al., 2003; Burdette et al.,
2010; Erickson et al., 2011). Compensatory mechanisms have
been supported by epidemiological, neuroimaging, and autopsy
studies (Bennett et al., 2003; Mortimer et al., 2005), showing
modulatory effects of CR on the relationship between Aβ

pathology and cognition. This differential mechanism of CR is
in line with our findings.

Our approach to quantify CR has several strengths over CR
proxies. We first attempted to reflect overall AD neuropathology
using multimodal neuroimaging, similar to previous residual
models, in that CR is defined as a residual. However, our
model focused on both structural aspect (neurodegeneration)
and proteinopathies (Amyloid and tau). This concept is in line
with the latest NIA-AA research framework on the biological
definition of AD. Second, our model mirrored the “present”
state of CR, unlike one static value of CR proxy for life. As CR
is considered an active construct developing from continuous
cognitive exposure, our model can be applied dynamically
according to the disease stage. Third, we distinguished CR itself
from CR proxies, as the latter have inherent limitations such as
inter-correlations, static value, and possible mechanisms other
than CR, by exhibiting direct impact on the neuropathological
process. We believe that the conceptualization of CR without CR
proxies can help to avoid these drawbacks.

Understanding the role of CR on the clinical progression in
AD has important implications in the clinical and research fields.
Despite persistent efforts, disease-modifying treatments have
failed for more than three decades. Alternative strategies have
been suggested to overcome the failures in disease-modifying
therapies for AD. CR may contribute to the development
of non-pharmacological approaches for delaying AD onset or
promoting AD prevention. Moreover, the concept of CR is
closely associated with precision or personalized medicine, an
emerging strategy for disease treatment and prevention that takes
into account individual variability in genes, environments, and
lifestyles. Precision medicine aims to optimize the effectiveness
of disease treatment and prevention by considering biological
components that may influence disease heterogeneity (Hahn and
Lee, 2019). Therefore, considering CR in the clinical environment
may provide a basis for accurate prognosis of patients and
facilitate an integrated approach. Finally, the genuine effects of
an intervention may be identified by categorizing individual
patients based on CR levels in clinical trials. Results of the
trials may thus be interpreted correctly through the adjustment
of baseline differences in CR between groups. Our approach
for measuring CR will facilitate understanding of the cognitive
trajectory of aging and AD, clarify individuals with susceptibility
or resistance to AD pathology, and characterize patients for
successful clinical trials.

Our study has some limitations. First, we recognize that our
CR model is a relatively simple linear model. We assumed a
simple linear relationship between cognitive function and brain
pathology and did not consider possible interactions between
AD biomarkers or other contributing factors such as white
matter hyperintensity or vascular components. In this study,
we attempted to extend the validity of our CR model based
on primary AD biomarkers (A-T-N) through longitudinal and
cross-sectional analysis, rather than aiming to capture the full
complexity of CR. Second, the sample size of the longitudinal
study was relatively small, and the results may be preliminary. If
we applied CSF information rather than PET imaging, it might be
possible to obtain a larger size of samples. However, we initially
intended to utilize the topological information of amyloid and tau
that CSF information cannot provide. Finally, two datasets have
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heterogeneity in the amyloid positivity of CU individuals. Dataset
2 only contains amyloid-negative subjects due to the scarcity of
amyloid positivity in unimpaired states. In Dataset 1 (ADNI),
we can utilize amyloid positivity participants in CU individuals.
Although the two datasets have heterogeneous characteristics,
we considered this to be somewhat meaningful in terms of the
opportunity to test the applicability of our methodology.
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